«Smart Water» EOR in carbonate and sandstone reservoirs, new reservoir screening techniques to evaluate increased oil recovery potential

Joining forces 2016
Skule Strand & Tina Puntervold
«Smart water» EOR in Carbonate

- Spontaneous imbibition in Chalk: $K = 3-5$ mD; $S_{wi}=10\%$, Crude oil $AN=0.5$, $T_{res}=90$ °C;

- Formation water: VB
- Seawater: SW
- Seawater depleted in NaCl
- Seawater depleted in NaCl and spiked with 4x sulfate
«Smart water» EOR, Reservoir Limestone

- Oil recovery by forced displacement at 100°C
 - Composite limestone reservoir core.
 - $\text{Swi} = 10\%$. Reservoir Crude Oil.
 - Brine injection:
 - FW0S - GSW - SW0Na
 - Injection rate: $\approx 0.6 \text{ PV/D (0.01 ml/min)}$

![Graph showing oil recovery vs. PV injected]
«Smart water» EOR in Sandstone

- Outcrop cores
 - Swi = 20%
 - Crude Oil with high BN
- Viscous flooding@40°C:
 HS - LS

<table>
<thead>
<tr>
<th>Ions</th>
<th>HS mM</th>
<th>LS1 - NaCl mM</th>
<th>LS2 - CaCl2 mM</th>
<th>LS3 - KCl mM</th>
<th>LS4 - MgCl2 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na+</td>
<td>1540.0</td>
<td>17.1</td>
<td>3.1</td>
<td>0.0</td>
<td>3.1</td>
</tr>
<tr>
<td>K+</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>17.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>90.1</td>
<td>0.0</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.7</td>
</tr>
<tr>
<td>TDS, g/l</td>
<td>100</td>
<td>1</td>
<td>0.7</td>
<td>1.28</td>
<td>0.63</td>
</tr>
<tr>
<td>IS</td>
<td>1.810</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
</tbody>
</table>

- Tertiary LS EOR effects observed for all LS Brines
- Increased pH for all LS brines
What is «Smart Water»?

• «Smart water» improves wetting properties in oil reservoirs and optimize fluid flow/oil recovery in porous medium during production.

• «Smart water» can be made by modifying the ion composition.
 – No expensive chemicals are added.
 – Environmental friendly.

• Wetting condition dictates:
 – Capillary pressure curve; \(P_c = f(S_w) \)
 – Relative permeability; \(k_{ro} \) and \(k_{rw} = f(S_w) \)
How does «Smart Water» work?

- Minor changes in O/W IFT
- Same pore distribution, \(r = k \)
- Unfavorable sweep with LS
 - LS viscosity lower than HS
 - Still increased recovery
- Increased Microscopic Sweep

\[
P_c = \frac{2 \sigma \cos \theta}{r}
\]

Wettability alteration towards more Water wet

\(P_c > 0 \rightarrow \) Imbibition

Increased Microscopic sweep efficiency
Reservoir Chemistry

- Chemical reactivity are temperature dependant. Reservoir Chemistry controlled by:

Crude oil
- Polar organic acids
- Polar organic bases

Brine
- Formation Water salinity and Ion composition
- Injection Water salinity and Ion composition

Rock
- Mineral surface reactions
- Carbonate
- Sandstone

- Reservoir Chemistry effects:
 - Initial Reservoir wettability
 - Wettability alterations by "Smart Water"
 - Scaling
Crude Oil chemistry

- Crude oil consists of thousands of different components:
 - Liquid fraction
 - Resins
 - Asphaltenes

 \[
 \text{Contain polar organic molecules}
 \]

 - Polar Organic Bases:
 \[
 R_3NH^+ \leftrightarrow H^+ + R_3N \quad \text{pKa} \sim 4.5-5
 \]

 - Polar organic Acids:
 \[
 RCOOH \leftrightarrow H^+ + RCOO^- \quad \text{pKa} \sim 4.5-5
 \]

- Surface reactivity of Polar organic Acids and Bases are pH dependant
- Polar organic Acids and bases interacts with charged rock surfaces
- serve as anchor molecules for the Oil phase towards Rock surface
Brine chemistry

- Injection water disturbs the chemical equilibrium in the reservoir

Chemical interactions at Ekofisk, 130°C, During SW injection:

- PW contained 73.6 vol% SW and 26.4 vol% FW (based on Na Cl mass balance)

-- Mg$^{2+}$ substitutes Ca$^{2+}$
-- SO$_4^{2-}$ adsorbs (and precipitates CaSO$_4$ (S))

- Field observations = Laboratory observations
Rock chemistry

- Carbonates:
 - positive surface charge
- Sandstones:
 - negative surface charge
 - Different ions and chemistry involved
 - Initial wetting
 - Wettability alteration

Different «Smart Water» EOR chemistry in Sandstone and Carbonate reservoirs!
Systematically worked with the chemical understanding of «Smart Water» EOR effects:
- Sandstone reservoirs
- Carbonate reservoirs

Outcrop core systems:
- systems for Sandstone
- Systems for Carbonate
- Contributed Fundamental understanding of
 - Crude Oil effects
 - Mineral effects
 - FW effects
 - Wettability alteration effects by «Smart Water»
«Smart Water» EOR industry projects

- Reservoir systems screened for EOR effects:
 - More than 30 Carbonate reservoirs/formations
 - More than 10 Sandstone reservoirs/formations

Special thanks to:
- BP, UK
- Total, France & Total, Norway
 - Talisman, Norway
 - Talisman Synoptics, UK
 - Lundin, Norway
- Saudi Aramco, Saudi Arabia
 - Petoro, Norway
- TaQa, UK
- Maersk, Qatar
- Shell, Netherlands
- Wintershall Holding GmbH, Germany
- Wintershall Noordzee B.V. Northsee, Netherlands
 - DNO, UAE
- JSC "Zarubezhneft, Russia
«Smart water» EOR in Carbonate

- Chemical wettability alteration Mechanism

- Wettability alteration mechanism in Carbonates
 - Acidic components strongly attached to surface
 - Need to be chemically reacted away
 - Wettability alteration catalysed by SO_4^{2-}
 - Ca^{2+} interacts with the R-COO$^-$ and releases it from surface
 - R-COO$^-$ --- Ca$^{2+}$ bonding ~10 times stronger than
 - R-COO$^-$ - - Mg$^{2+}$
 - Reactivity increases with reduced salinity
«Smart water» EOR in Sandstone - Chemical wettability alteration Mechanism

- Wettability alteration Mechanism in Sandstone
 - Clays are the main wetting mineral in Sandstone
 - Wettability alteration linked to pH increase, FW vs. «Smart water»

Model for Basic polar organic material:

- Desorption of Cations by low salinity water (Rate determining step)
 \[\text{Clay-} \text{Ca}^{2+} + \text{H}_2\text{O} = \text{Clay-H}^+ + \text{Ca}^{2+} + \text{OH}^- + \text{HEAT} \]
- Wettability alteration induced by pH increase, Basic material
 \[\text{Clay-R}_3\text{NH}^+ + \text{OH}^- = \text{Clay} + \text{R}_3\text{N} + \text{H}_2\text{O} \]

«Smart Water» EOR potential
- Reservoir screening procedure

- 3 stage «Smart water» EOR Screening of Reservoirs:
 1. Desk evaluation on available reservoir data
 - Reservoir history
 - FW salinity and composition
 - Rock properties, Mineralogy
 - Pore distribution/heterogenity
 - Crude Oil properties
 - Reservoir temperature
 - Evaluating if the reservoir are a «Smart Water» Candidate
 2. Experimental Screening with reservoir cores and FW + inj. Brines
 - Surface reactivity tests on reservoir rock/core
 - Chemically induced Brine – Rock interactions
 - Possible Wettability effects
 - Evaluating potential for wettability alteration by «Smart Water»
 3. Oil Recovery tests on preserved reservoir cores
 - Compare recoveries with Smart Water and other brines
 - Spontaneous imbibition
 - Viscous flooding
 - Secondary /Tertiary mode
 - Conclude/evaluate «Smart Water» EOR Potential
Ongoing/planned Research activities:
- «Smart Water» EOR Group

- «Smart Water» EOR activities:
 - Type of Reservoirs
 - Dolomitic reservoirs
 - Limestone/Chalk reservoirs
 - Sandstone Reservoirs
 - Shale Oil Reservoirs
 - Reservoir heterogeneity
 - Pore distribution / tracer tests on cores
 - Minerals
 - Chemical reactivity of minerals
 - QuemScan project together with Drilling and GeoScience group at UiS
 - Type of minerals and distribution at pore surfaces
 - Crude Oil properties
 - Polar components/Asphaltenes
 - Crude Oil/brine IFT at reservoir conditions
 - Reservoir wettability
 - Crude Oil species with high surface affinity
 - Chemical Reactivity / Surface Charge of reservoir minerals
 - FW ion composition and salinity
 - Temperature effects
Ongoing/planned Research activities:
- «Smart Water» EOR Group

- Core cleaning / core restoration procedures
 - Cleaning solvents / fluids
 - Crude Oil sat. /readsoption of polar components
- «Smart Water» EOR
 - Reactivity of pore wall Minerals
 - Wettability and wettability alteration mechanisms
 - Optimizing Smart Water EOR Brine compositions
 - Design of new «Smart Water» EOR fluids
- PennState University Collaboration (Group of Prof. Russel Johns)
 - Modelling of Chemical Wettability alteration processes

- Combined techniques with «Smart Water»:
 - EOR chemicals will influence Reservoir Chemistry:
 - Polymers
 - Nano-particles
 - Surfactants
 - New

- We are open for Industry Knowledge building projects:
 - Reservoir Evaluation of «Smart Water» EOR potential
 - in combination with Fundamental «Smart Water» EOR studies